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Abstract--Sedimentation rates are significantly enhanced when the process occurs in containers of certain 
shapes or orientations. For example, sedimentation in a conical vessel or a tilted tube may be several times 
faster than sedimentation in a vertical tube of the same height. This enhancement results from a naturally 
occurring convection. 

Monodisperse particles were observed during settling from a viscous, incompressible, and Newtonian 
fluid contained beneath an upward-pointing cone. At particle concentrations of about 0.05 per cent by volume, 
convective velocities reach ten times the particle settling velocity, and sedimentation is complete in 40 per cent 
of the time necessary in a vertical tube. 

Continuum fluid mechanics successfully models this settling convection. The mechanism is particle 
momentum transfer to fluid. The model requires numerical solution but its functionality can be investigated 
in terms of dimensionless parameters. 

INTRODUCTION 

Studies in many fields have reported enhanced sedimentation resulting from a naturally 
occurring convection. This "settling convection" has been observed during batch sedimentation 
in certain enclosure geometries. The mechanism responsible for this phenomenon has never 
been demonstrated. 

Mechanisms can be postulated and worked into models of settling convection, but confir- 
mation of any such model requires that its prediction be compared to fundamental data from an 
observable case. Convective velocities are observed in this work for a simple, two-dimensional 
case of settling convection. These, the first observations of their kind, serve to confirm a model 
and thus the mechanism on which it is based. 

Confirmation of the mechanism permits predictive modeling and the interpretation of the 
ruling dimensionless parameters. This study makes an important start toward functionality as 
the basis of criteria for the design of settlers employing settling convection. 

PREVIOUS WORK 

The phenomenon of settling convection has been primarily studied for the case of settling in 
inclined tubes. Boycott 0920) observed the sedimentation of corpuscles in test tubes containing 
blood and discovered that a greater percentage of corpuscle-free fluid appeared with sedimen- 
tation time in inclined tubes than in vertical tubes. 

Mechanistic explanations of settling convection have been proposed. Lundgren 0927, 1928) 
proposed that an explanation for Boycott's effect lay in the ability of liquid displaced by 
settling particles to bypass percolation back up through the dense cloud of falling particles by 
flowing upward beneath the upper inclined surface. Kinosita (1949) observed convection 
currents during sedimentation in tilted tubes and beneath inclined boundaries. He proposed 
that these currents account for Boycott's curiosity. He observed some particles to move at 100 
times their sedimentation velocity. 

Several models of settling convection have been presented, but none has a true mechanis- 
tic basis. Each model contains an assumption of interface shape. Each predicts only interface 
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movement, accelerating the movement as the result of hypothetical flows of clear fluid out from 
suspension situated beneath an inclined surface to join clear fluid above the interface. 

Derivation of the first model is generally attributed to Nakamura & Kuroda (1937) but was 
in fact preceded by the similar, but less developed model of Ponder (1925). The model is 
derived for sedimentation in an inclined, rectangular tube resting on a bottom edge as shown in 
figure 1. The tube of side length A and inclined at an angle fl to the vertical is initially filled with 
a uniform slurry to vertical height B + A • sin 1~. Approximating behavior observed for certain 
suspensions (all experiencing hindered settling), the suspension interface is constrained to be a 
horizontal plane located a distance h(t)  beneath the liquid surface as a function of time, t. It 
is argued that in a time dt unconstrained particles would all fall a distance s •dt  (where s is 
their settling velocity in a vertical tube) and the clarified volume should increase as illustrated 
by the arrows. No clarified volume is observed to exist along the upper inclined surface, 
however. The model postulates that this clarified liquid be added to the clarified liquid above 
h + s • dr, giving the observed increase of h to h + dh in time dt. 

The resultant prediction for h(t)  is 

h = (B + A see l-l) [ 1 - exp \ A [1] 

This equation apparently represents an upper limit to the rate of sedimentation. Later workers, 
including Graham & Lama (1953) and Vohra & Ghosh (1971), found less enhancement of 
sedimentation than predicted by the equation and have inserted empirical coefficients into the 

equation. 
Recently Zahavi & Rubin (1975) have presented a more complicated model which assumes a 

horizontal interface coupled with a thin clear layer beneath a vessel's downward-facing inclined 
surfaces. The model requires both an empirical constant, determined for the enhanced- 
sedimentation effect of a given fluid/particle system, and settling rate versus concentration data 
for vertical vessels. The empirical constant is assumed to represent a fixed average rate of clear 
fluid generation per unit area of downward-facing, inclined surface in the suspension. 

The solids concentration at the horizontal interface is assumed to vary in inverse proportion 
to the area of the interface. When vessel shape dictates that the area of the interface changes 
during sedimentation, the resultant change in particle concentration at the interface is taken to 
affect the rate of settling of interface particles. Interface movement is based on this concen- 
tration dependent rate of interface settling, further increased to allow for the clear fluid 
generation under inclined surfaces. A match between the model and data of Zahavi & Rubin 
(1975) may be explained by the amount of empirical correlation involved. 

Oliver & Jenson (1964) have presented a model in which the assumed interface, shown in 
figure 2, was a function of two parameters, h and e. Such interface shapes were observed in 
using monodisperse polymer suspensions of 1-15 per cent by weight. The model was developed 

B 

Figure 1. PNK theory for an inclined, rectangular 
settling tube. 

Figure 2. Ofiver and Jenson theory for an incfined, 
rectangular settling tube. 
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from the implied dynamic geometry and the addition of a simple convection term containing an 
empirical function of concentration and angle of inclination. The solution, giving the two 
parameters as a function of time, was obtained on an analog computer. Agreement between the 
model and data was fair. 

As in the work reviewed above, this paper presents a model for settling convection in the 
context of the batch sedimentation of an initially uniform and quiescent suspension in a vessel 
without a single, horizontal upper-bound. It should be noted, however, that there are other 
contexts in which similarly based convection is observed. Pearce (1921) first saw a relationship 
between inclined baffles in clarifiers (recently touted in the form of "high-rate settlers") and 
inclined tube sedimentation. Convection has been noted as a source of error in sedimentation 
size analysis by Coutts & Crowther (1925) and Kast (1960). The settling of particle clouds is 
enhanced by convection (Woodward 1964) and geological significance has been ascribed to this 
fact (Bradley 1965). Such convecture phenomena have in several instances, been ascribed to 
momentum transfer from particles to fluid. 

EXPERIMENTAL STUDY 
Preliminary consideration 

Based upon the literature, three mechanisms can be postulated as causing settling con- 
vection: (I) suspension density gradients, allied with particle concentration gradients, are not 
parallel to hydrostatic pressure gradients. Convection acts toward establishing a downward 
gradient of density. (II) Return flow of liquid displaced by settling particles channels through 
regions of lower particle concentration. (HI) Particles collect near, and flow down along, 
upward-facing, inclined surfaces (where such a surface is present). 

On the hypothesis that mechanism I is the dominant cause of settling convection, experi- 
ments were designed in which the other mechanisms could not account for significant con- 
vection. Working at low volumetric particle concentrations (-0.05 per cent) causes return flow 
to be negligible and rules out mechanism II. Mechanism III is eliminated by studying sedimen- 
tation beneath an upward-pointing cone where there are no upward-facing, inclined surfaces. 

In contrast to the case in enclosures previously studied, batch sedimentation in an upward- 
pointing cone is a predictably two-dimensional phenomenon. The suspension interface has the 
same shape in all radial planes. Fluid and particle velocities are confined to radial planes. 

Considering that the phenomenon is convective in nature, observation is focused on particle 
motion. But the particle motion in a radial plane of a cone must be viewed through a depth of 
undisturbed suspension. Particles of a small size relative to the enclosure will, at all but 
unacceptably dilute concentrations, mask observation of a radial plane. This problem is averted 
by use of a matched-refractive-index, fluid/particle system which is optically more dilute than it 
is in fact. If the majority of the particles are transparent, they are invisible in a fluid of 
matching refractive index. An adjustable minority of non-transparent particles are dispersed as 
the visible constituent of the suspension. 

Fluid/particle system 
Properties of the fluid/particle system are tabulated in table 1. The particles are glass beads 

sieved into narrow size ranges. 
The necessary non-transparent particles were manufactured from the clear beads by a fine 

surface silvering. An old mirror silvering process was adapted to the purpose from its 
description by Strong (1938, p. 157). The resultant silvered "markers" were virtually identical to 
the parent, clear beads in all but optical properties. The volume fraction of markers in 
suspension was set at 2.5 x 10 -5 or 1.5 x 10 -5 for size range I or size range II respectively. 

In green light and at 30°C the refractive index of the clear beads matched that of a mixture 
of two hydrocarbon oils. The major constituent of the fluid mixture was Monsanto HB-40, a 40 
per cent hydrogenated terphenyl. This constituent possesses an unusually high ratio of 



564 W, D. HILL. R. R. ROTHFUS and K. LI 

Table I. Summary of experimental matched refractive index system (30"C, 550 nm) 

Glass beads 
Shape, 99.9 per cent spherical, very few voids. 
Size distribution after sieving: 

Size 1 Size II 
mean diameter (P =0.95) 132.0±0.5/~m 103.2±0.4 
standard deviation 6 p.m 1.8/~m 
range containing 75 per c en t  123-139/zm 101-105 tan 

Composition, Coming code 0221, 1-1-3 parts, soda-lime--silica by wt 
Color, clear 
Refractive index, 1.547 
Density, 2.65 g/cm 2 

Fluid 
Composition, 79.30 per cent by wt. hydrngenatod terphenyls 

(Monsanto HB-40 ~) 
20.70 per cent heavy mineral oil (Fisher 0-120) 

Color, yellowish, clear to 550 nm light 
Refractive index, 1.547 
Density, 0.970 g/cm: 
Viscosity, 36.0 centipoise (0.036 N. sec/m 2) 

Fluid/particle system 
Particle concentration, around 0.05 per cent by volume (dilute!) 
Fraction silvered markers, commonly 0.05 
Particle Reynolds No, (I) 0.00149; flI) 0.000707 (laminar) 
Settling velocity, (I) 0.046 era/see; (II) 0.025 era/see 

refractive index to density and is easily handled. The refractive index was lowered to the 
matching value by dilution with a heavy, white mineral oil. 

Fluid/particle properties combine to give a simplified behavior. Settling occurs at low 
Reynolds number, Brownian motion is negligible, and coagulation of particles is minimal. 

Particle settling velocity is a particUlarly important system property in this work. For this 
reason empirical settling-velocity distributions were obtained for each of the bead size fractions 
using silvered beads at 0.0025 per cent by volume in the chosen fluid. Other than use of a 
vertical-walled settling enclosure, the technique used to measure settling velocities was iden- 
tical to the technique used for measuring particle velocities during an experimental run 
(technique detailed later). The empirical distributions for size fractions I and II were ap- 
proximately normal with means of 0.0461---0.0007 era/see and 0.0251---0.0005 era/see respec- 
tively and standard deviations of 0.0037 era/see and 0.0026 era/see respectively. The empirical 
distributions were broader than distributions calculated from particle size ranges and other 
measured physical properties using Stokes' law, but the means of the empirical and calculated 
settling velocities agreed within 7 per cent for both size fractions. 

Apparatus 
The conical enclosure was provided by one of two glass funnels inverted on a plate, They 

had an internal base diameter of 14.0 cm and base angles of 59.7 ° and 47°C. The funnel tubes at 
the top of the cones were 1.4 cm in diameter. 

An open-top, rectangular "cell" or tank was constructed to contain the fluid/particle system. 
Agitation was carded out in this cell, and then a cone was immersed and set on the bottom of 
the cell. Glass walls in the cell provided an undistorted view into fluid under the cone. 

Initial agitation of the suspension was provided by cyclic vertical movement of a horizontal, 
perforated plate within the fluid. The cone was inserted into the rectangular cell on top of the 
perforated plate following complete particle dispersion. The final step of the agitation was to 
raise the perforated plate to the surface of the fluid while the cone was positioned oni t  and then 
to lower the two together back to the base of the cell. 

Zero experimental time was defined as the moment that agitation ceased. There were 
uncertainties in the state of the system at this time. Ideally the suspension was to have been 
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well-mixed and quiescent. Deviation from this state was, to a degree, experimentally examined. 
The use of tracers showed that at 15 sec, the earliest practical time of observation, all residual 
velocities in a normally agitated, fluid-filled cone were less than 0.005 cm/sec. The uniformity of 
initial particle dispersion was inferred from the photographic observation of particle dispersion 
in two separated regions after 15 see of sedimentation. A statistical analysis showed good 
probability that the distribution of local particle concentration within the two regions came 
from one and the same Poisson distribution. 

Thermal convection in the system was eliminated by careful temperature control of the 
rectangular cell and the cone at 30.0_0.1°C. 

Observations were restricted to the vicinity of a radial plane in the cone by photomacro- 
graphic camera optics. Only particles within -0.1 cm of the subject plane were in focus. 
Photographs were produced at three-fold magnification on 4 in. x 5 in. Polaroid film. Each 
photograph covered only about two square inches of the subject plane. For study on the larger 
cone scale, a montage of photographs from different runs under identical conditions was 
assembled. Successful assembly was practical because of good experimental reproducibility 
and an accurate photographic positioning mechanism (-+0.2 cm in both vertical and horizontal 
directions). 

Particle motion was photographically recorded as a multiexposure by exposing each film 
while the subject area was illuminated with a precisely timed sequence of strobe flashes. The 
sequence was flash/1 sec pause/flash/1 sec pause/flash/1 see pause/flash/2 sec pause/flash/1 sec 
pause/flash. The sequence was assymmetric in time, so that direction of movement was 
indicated. The fourth, central flash occurred at what was defined as the nominal observation 
time. Particle velocities and accelerations at this time could be easily approximated from the 
multiexposured images of each particle. 

Light was collated, filtered to pass only green light (-60 per cent, 520-575 nm), and directed 
obliquely from the camera side toward the subject area. 

Observations 
Settling convection was studied in the most detail for the "standard" case of the 

sedimentation of a 0.05 volume per cent suspension of size fraction I beads beneath the 59.7 ° 
cone. Montage photographs of particle motion were collected for 15, 30, 45, 60, 75, 90, 105, 120 
seconds of sedimentation. 

Plots derived from the first four of the montages are shown in figures 3-6. Particle motion in 
the montages was represented by small light images on a gray background, and thus the 
montages can not be easily reproduced (reproductions are on record in Hill (1974)). Particle 
motion in the derived plots is represented by sets of black dots and these are displayed for only 
a small fraction of the particles appearing in the original montages. One particle's motion is 
represented by a series of six dots representing the multiexposure of particle position over 
6 sec. During the first 3 sec, the particle travelled between the four adjacent dots and in the 
second 3 sec travelled on to the fifth and sixth dots. 

The standard case is dramatically different from sedimentation in a vertical-walled vessel 
where particles settle vertically at a uniform rate. Rather, particles are swept up by a strong 
counter-clockwise circulation which develops early in the sedimentation. Particles in the 
vicinity of the cone centerline settle much faster than is accountable by their Stokes velocities. 
The uppermost particles move quickly downward, tending to level out the top of the cloud of 
particles (the upper interface). As particles approach the base, they angle radially outward 
toward the cone walls, thus maintaining substantial base coverage by the cloud of particles. 
Particles near the cone walls and removed from the base are convected upward! 

The convection is vigorous and effective in reducing settling time. At 30 sec some particles 
are moving at over eight times their experimentally-confirmed Stokes velocities. Sedimentation 
is completed in 40 per cent of the time necessary in an equal-height, vertical tube. 

IJ.M.F., Vol. 3, No. 6--E 
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Figure 3. Settling time, 15 sec. 
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Figures 3-6. Observed particle trajectories for standard case (0.0005 volume fraction particles of size 
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Variations on the standard case were examined through three independent parameters: 
particle concentration, particle settling velocity, and cone base angle. A collection of montages 
were produced to follow the sedimentation in each case where a parameter was varied. For 
each manipulated parameter, the particle motion represented in one such montage is presented 
later in this paper in a direct comparison with predicted particle motion (figures 14-16). In each 
case of convection, the character of the circulation was the same. 

Particle concentrations of virtually zero and of 0.20 volume per cent were examined for 
comparison with the standard-case level of 0.05 volume per cent. At particle concentrations 
approaching zero, all particles settle at their Stokes velocities. At the highest concentration 
studied, the particle cloud was more quickly leveled than in the standard case, but sedimen- 
tation was completed only slightly sooner. Figure 14 shows particle motion after 60 sec of 
settling at this concentration. 

Sedimentation of the smaller, size-fraction II beads dispersed at the standard particle 
volume fraction was also studied. Figure 15 shows particle motion at 60 sec. The time scale of 
the sedimentation was lengthened in approximately inverse proportion to the settling velocity of 
the particles. The particle cloud was, however, more leveled at a given degree of particle 
removal when the smaller particles were used. 

Sedimentation of the standard fluid/particle system was studied beneath the alternative cone 
with a 47 ° base angle. The process was completed more quickly than in the standard case, but 
this was nearly accounted for by the relative height of the cones. Particle motion at 30 sec is 
shown in figure 16. 

Analysis 
One serious shortcoming of the experimental technique was that suspension interfaces were 

not conclusively defined in the montages. Interface placement for purposes of analysis was a 
matter of personal judgement and thus not very useful. Figure 7 presents an average of two 
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individual judgements of the position of the experimental interface during settling of the 
standard case. 

Accurate data on particle velocities, however, was available from the montages. Each 
"observed" particle velocity represented a time-average over 6 sec of particle motion, and, as 
such, was accurate to within 0.002 cm/sec. The velocity was identified with the time-average 
particle position. Over 600 velocity/position data sets were collected and are available 
elsewhere (Hill 1974). They may be used to check the validity of a mechanistic model. 

Obviously, a new model is needed because none of the past models have derivations 
consistent with the convective mechanism observed here. None allow for any concentration 
dependence, at least at the low concentrations employed here. That is, they do not extrapolate 
to unenhanced sedimentation at zero concentration. Each of the previous models predicts that 
at t --0 the suspension interface in a cone is falling with an infinite velocity. 

By confirming the presence of significant settling convection at low concentrations and 
beneath a cone, the experiments have restricted the list of possible mechanisms. 

THEORETICAL MODEL 
Mathematical representation 

A monodisperse slurry of small particles may be treated as two interacting continua--an 
extended, homogeneous fluid and a homogeneous particle "cloud". True point variables are 
replaced by smoothed variables obtained by averaging over regions which are large compared 
with particle spacing but small compared with the complete system. The smoothed variables for 
one phase are "reduced" to continuously fill the system. 

There have been many derivations of somewhat-general continuum models consisting of 
sets of complex partial differential equations. It is possible to start from these complex forms, 
and with appropriate approximation, reduce them to the model which is presented here. The 
general formulation of Soo (1967) was reduced under the following assumptions: (1) the system 
is two-phase, non-reactive, and isothermal. (2) One phase consists of monodisperse, spherical, 
rigid particles. (3) The second phase is an incompressible and Newtonian fluid. (4) Particles are 
in dilute suspension in the fluid. (5) Gravity is the only active body force. (6) Relative motion 
between phases is laminar and at quasi-steady state. 

The resultant equations, most conveniently presented in dimensionless form, include a fluid 

momentum equation, 

• 70_L , + NReV. VV = - V@ _ ~,T~ (1 - ¢)g + V2V, [2] 
OT NRe 

a fluid continuity equation, 

v .  v = o, [3] 

and a particle continuity equation, 

a(1) 
- -  + NR,(V + ~)" V~ = 0. [4] 
OT 

In place of a particle-momentum equation there stands the condition that particles settle with a 
predetermined settling velocity relative to the fluid, i.e. 

Vp = V + ~. [5] 

Two dimensionless groups appear, a sedimentation Reynolds number and a sedimentation 
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Grashof number. These are defined as 

and 

~wp 
NR. = - -  [61 

be 

B3gp(pp - p)4~ ° 
No~ = 2 [7] 

be 

where B =vertical enclosure dimension, e.g. cone height; W=particle settling velocity; 

pp = density of particulate material; p = density of fluid; be = viscosity of fluid; g = acceleration 
due to gravity. Direction unit vector is ~; and d~ = particle volume fraction. Initial value ~0. 

If the particles are spheres of radius, a, and are initially separated by an average interparticle 
distance, l, then 

W = 2a2g(PP - p) 
9be ' [81 

Ne~ = 2a 2 Bgp(pp - p) 
9/.t2 , [9] 

N~r aB 2 
NRe = 6~r 13 . [ 1 0 ]  

The dimensionless independent variables, time and space coordinates, are defined in terms 
of the dimensioned variables t and xi, as 

_ be T - ~ p t ,  [11] 

Xi 
Xi B"  [121 

Dimensionless forms of the dependent variables, particle concentration and velocity vector, v, 
are similarly defined: 

¢~o [131 

V 
v = - - .  [141 W 

Dependent variable O is a pressure function whose dimensionless gradient is defined in terms of 
the gradient of a dimensioned pressure function V0 and the pressure gradient Vp by: 

8 2 2 
VO = ~-~  V0 B = ~ [ V p  - og  - q,°(o,, - o ) g l .  [151 

By this definition VO is zero at the initial time, and solution of the equations is simplified. 
The fluid motion is described by [2] and [3] which, but for the addition of the term 

- ( N G , / N R ~ ) ( 1 - O ) g  to the momentum equation, are those commonly used for a fluid with 
constant density and viscosity. The constant part of the term, -(NG,~/NRe),  appears as a result 
of the introduction of O and causes the overall term to vanish at the initial time. 
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The variable part of the term, (N~,/NR,)~P~, has two interpretations. In the context of the 
interacting continua approach, it represents the "smoothed", local momentum-transfer from 
settling particles to fluid. In dimensional form the group (pp - p)c~g, is seen to be the momentum 
transfer rate per unit volume of suspension. This part of the term may also be viewed as a 
reaction in the fluid to the drag forces acting on particles. Thus it is proportional to particle 
concentration and in the direction of gravity. 

If the "fluid" momentum equation is viewed as a slurry momentum equation, then the 
variable part of the term takes on a Boussinesq interpretation in terms of one continuum fluid 
possessing the bulk slurry density. Bouyancy forces result as this density varies with particle 
concentration. At low particle concentration, the density difference between slurry and clear 
fluid may be sufficiently small that its effect on continuity and the viscous-force terms can be 
ignored, while its effect via the bouyancy-force term is significant. The model is applied under 
these conditions. 

The effect of the term is that fluid containing particles will tend to flow downward relative to 
fluid free of particles. There will be resultant flow whenever the gradient of particle concen- 
tration is not co-directional with gravity. 

The above model is compatible with the conditions prevailing in the experimentally studied 
case of sedimentation beneath a cone. This case is two-dimensional in the cylindrical coor- 
dinates r (radial) and z (axial from the base). The two-dimensionality was experimentally 
confirmed. 

In cylindrical coordinates and dimensioned variables the modeling equations become 

ou+o(ru2) +o(uv) oo o_{ou 
0--[ rOr' Oz = Or p Oz \ ~ z - - ~ r ] '  [16] 

. o r / o u  ov ] 
Or+ O(ruv) + av_~Z= oO ~_pp - O g ~ b O ( l _ , ) _ ~ r  [ r ~ z  - ~ r ] J '  [171 
Ot rOr Oz Oz O 

10(ru)+ OV=O [18] 
r Or Or 

and 

W) O~ ~t + u ° ~ + ( v  - -~-z = O, [191 
Or 

where u and v are fluid velocities parallel to the r and z axes respectively. Since gravity is in 
the direction of decreasing z, the equivalent particle velocities are 

up = u, [20] 

vp = v -  W. [21] 

The solution geometry of interest is a right triangle, a symmetrical haft of that portion of an 
r,z-plane which is contained under the cone. There are three boundaries to the fight triangle, the 
cone axis, the inclined cone surface, and the base. The axisymmetric condition along the cone axis 

gives 

u = 0  and 0v=0. [22,23] 
Or 

The other boundaries are no-slip, i.e. 

u = v = 0. [24, 25] 
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The solution technique which follows does not directly require pressure boundary conditions, 
but these are Newman-type conditions specifying pressure gradients normal to the boundaries. 

Most initial conditions are homogeneous throughout the region; 

u = v = 0 = O. [26, 27,  28] 

The suspension interface initially coincides with the inclined cone surface. On this boundary 

-- O, [29] 

elsewhere in the region 

= 1. [30]  

From the viewpoint of the particle cloud, these conditions imply that particles are falling out 
of the system through the portion of the base which is covered by the cloud. In the dilute 
approximation these particles do not displace fluid and do not result in a return flow of fluid. It 
is also implied that the particle concentration must always be zero on the inclined cone surface. 

The particle continuity equation, [19], represents a vanishing of the substantial (or 
"Lagrangian") derivative of particle volume fraction with respect to particle velocities. Thus, if 
an observer moves along with the particle phase velocity, the concentration in the vicinity of 
the observer can not change. The prescribed initial condition includes a sharp interface 
separating a region of uniform particle concentration beneath the cone from one of zero 
concentration above. In combination with the above Lagrangian interpretation, this directs that 
the moving interface will continue to be sharp and to contain a region with the initial 
concentration. Interface movement is defined by the movement of particles at the interface 
satisfying [20] and [21]. 

This restriction to constant concentration in the particle cloud is the result of an assumption 
in the derivation of the continuity equations. The more complete fluid continuity equation, from 
which [3] is derived, expands to give 

OO 
- ~  + N ~ V .  VO = NRe(1 - ~ ) V .  V. [31] 

The L.H.S. is assumed to be negligible in comparison to the R.H.S. when the suspension is 
dilute. The derivation of the particle continuity equation, [4], entails this same assumption of 
negligible concentration change, and thus causes the restriction. 

Solution technique 
No analytical solution to the problem posed by the model has been found. Numerical 

solutions are possible using a complex finite difference scheme. The basis of the scheme 
employed here is the SMAC method developed by Amsden & Harlow (1970a,b) at Los Alamos. 

Finite differences schemes involve judiciously representing partial derivatives by ap- 
proximations based upon differences in variable value at discrete and regular positions in space 
and time. The right-triangular solution region of the current problem is covered by the mesh 
illustrated in figure 8 with horizontal mesh spacing 8r and vertical mesh spacing 8z. Individual 
cells are referenced by an integer pair (i, j) where i indicates the column counting from left and 
j indicates the row counting from the bottom. Variable values at discrete locations are subscript 
to refer to their position in the mesh, and these locations are illustrated in figure 9 for cell (i, j). 
The radial coordinate at the center of the ith column of cells is represented by ri. 

Time is also expressed in discrete steps, Or. Variable values are superscript to indicate the 
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Figure 8. Computing mesh covering a radial 
slice in a cone. 
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Figure 9. Variables defined in a cell of the 

computing mesh. 

time step. Thus, for example, U",F~2.j represents the horizontal velocity on the right side of cell 

(i, j) at time t + ~t. 
With these definitions, [16]-[18] describing fluid-phase motion are approximated by the 

following finite difference equations (F.D.E's). 
The r-direction momentum equation: 

n+l n 
Ui+l /2 , j -  Ui+l/2d riu n+ 1/2 jU~- l/2.j --ri + l lg n+ 312.flg n= I/2,j 

8t r~+ ~/28r 8z 

Oi,j-O_i÷l,J+tzf 1 . 
[ ~ z  ~ (U,+l/2.., + u,"+,,2.j-,  - 2u,~+I/~.j) 

~r 

_ _ _ 1  (l) in+l. j+l/2- l)i~l,j-l /2 -- 1)in.j+l/2 + /)~,i- 1/2)1. 
~r~z _1 

u n  /)n 
i+112,j-112 i+1/2,j-I /2--  un+ I/2,j + I/2ZY ~+ I/2.j + I/2 

[32] 

The z-direction momentum equation: 

/)n+l V n n n • n vn  V n n n. n _ 
i,j+l/2-- i,j+l/2 Fi--1121~i--l/2,j+l121)i-l/2,j--I/2-- i+11214i+112,j+112 i+1/2,j+112 i,j+l/2 "1)i,j--l/2 - l)ij+3121)ij+l/"~ 

8t ~Sr ~z 

Oi,j - Oi,j + l + Pp 

8z p 

n tl Vn n • 
(Ui- - l /2 , j+l - -  Ui-I/2,j i , j - l /2" - -V i - l . j+ l /2 ) l  

- ri-t/2 \ ~ z  8r J '  [33] 

and the continuity equation: 

n+l -- r n+l n+l n+l 
/.)i,j~n+l'~U, U) = r i+l /2Ui+l/2, j  i-1/2Ui-l/2,j ~ Vi,j+l/2-- Vij-U2 = 0. [34] 

n~r ~z 

These F.D.E.'s are seen to be approximations to the original partial differential equations term 

by term. 
A cycle of time advancement consists of (l) solving the above set of F.D,E.'s for fluid 

movement given n-level velocities, pressure, and particle distribution and (2) using the resultant 
(n + 1)-level velocities to obtain the (n+l)-level particle distribution used in the next cycle. 

In the first phase, fluid movement is advanced using the ingenious SMAC method. In order 
to understand the method, notice that the two fluid momentum equations (or their F.D.E. 
equivalents) may be combined after cross-differentiation to yield a pressure-independent 
transport equation for vorticity. This implies that if a zero pressure field (0 = 0) is inserted into 
the momentum equations when they are solved, the resulting velocity field (~, ~) will carry the 
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right vorticity although the continuity equation is yet to be satisfied. But now, if the velocity 
field is altered by the addition of an appropriate potential function (~), the altered field will 
carry the same vorticity, satisfy the continuity equation, and accordingly be uniquely deter- 
mined--hence correct. The appropriate potential function results from the divergence of the 
tilde velocity field, 

V2~b = D(~, ~). [35] 

In the numerical solution a five-point, finite difference respresentation of this Poisson equation, 

1 _ D n + l - -  r~Sr zl [n+i/z(~i+ij - #/i,j) - ri-i/z(~tij - ~i-ij)] - ~z 2 (~ij+l +. ~i,j-1 - 2~ij) - ij tu, ~) [36] 

is solved by an SOR iteration. The resultant potential field is used to convert the tilde velocity 
field to the true field, 

and 

n+l -n+l I~/i+ I,j -- ~Ji.j 
Ui+~/2,i = Ui+~/Z~ 8r [37] 

n+l -n+i ~ij+l - ~bij 
vi,j+~/2 -- vij+~/2 [38] 

6z 

This explanation is the basis of a scheme which yields a solution of the fluid dynamics in 
which the potential function, ~, replaces 0, the pressure function, as one of the primary 
variables. Initial conditions are easily implemented by zeroing the u, v and ~ fields. 

Implementation of boundary conditions requires more care. The mesh extends beyond the 
physical limits of the fluid, and boundary conditions are implemented by assigning fictitious 
variable values in the externally created "boundary cells". The boundary conditions include 
no-slip and free-slip velocity conditions and the condition that the gradient of ~b vanishes normal to 
all boundaries. Application of these conditions on the base and centerline of the cone is 
straightforward. 

Boundary conditions are necessarily applied with less precision on the inclined boundary 
because it is oblique to the mesh. The handling of conditions at this boundary and other details of 
the fluid movement phase of the cycle of time advancement are available elsewhere (Hill 1974). 

The particle-movement phase involves advancing the suspension interface. Approximately 
100 point markers represent the interface and are initially located evenly along the inclined 
boundary. Since these markers could be identified with particles on the interface, their 
movement is defined by [20] and [21]. Each marker is followed in Lagrangian fashion by 
interpolating the current fluid velocity components at the marker position (u, v) and assuming 
the marker moves u .  8t in the horizontal direction and ( v -  W). 8t in the vertical direction 
during the time St. 

As interface markers are repeatedly moved during a number of time steps, the even marker 
spacing is lost to the extent that editing is required to maintain an efficient interface represen- 
tation. This is done by destroying markers in some areas and generating interpolated markers in 
others. Markers are also destroyed when they are sufficiently below the base. 

From the interface position a particle concentration cbTj÷l/2 is defined for each fluid cell. This 
concentration is defined as the fraction of the area of a mesh-size cell centered about (i, j + 1/2) 
which is located beneath the interface. A complex algorithm was developed for this purpose. 

The solution technique which has just been generally described was implemented by a 
computer program BESSC. Presented with system properties and solution technique 
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parameters, BESSC computes through a modeled sedimentation. At intervals during the 
sedimentation the state of the sedimentation is output via print-outs, plots, and storage on 
magnetic tape. The output on magnetic tape was employed by ancillary computer programs for 
comparison to experimental results, for interpretation in terms of an energy balance, for 
re-plotting, and for restarting a solution from an intermediate stage. Approximately twenty 
cases have been solved. 

Normal execution time was 200 rain on an ICL 1904A computer and 10 rain on a CDC 7600 
using a mesh size containing twenty fluid cells horizontally and vertically. This was a practical 
upper limit because the necessary computational effort increased as the cube of the mesh size. 
The 20 x 20 solutions are a reasonable approximation to the true solutions, however at least two 
mesh-scale aberrations are evident. Mesh-scale waves on the interface arise during early 
convection beneath the inclined boundary. Secondly, fluid in mesh cells at the corners where 
boundaries meet must remain stagnant. 

COMPARISON OF THEORY AND EXPERIMENT 
Settling convection 

The previous illustrations of observed particle movement demonstrate an unsteady-state 
circulation referred to as settling convection whose presence speeds sedimentation. Solutions 
based on the theoretical model show settling convections with approximately the same 
magnitude, character, and timing as those observed. Differences are easily ascribed to ex- 
perimental error and the theoretical solution technique. 

This is best demonstrated by figures 10--13 which are the predicted counterparts to the 
experimental results shown in figures 3--6 respectively for the standard case. Predicted particle 
motion over 6 sec is shown by a broken line consisting of two dashes--the longer representing 
the particle path over the 3 sec prior to the nominal time and the shorter representing the 
particle path over the period from 2 to 3 see later. The broken-line trajectory is comparable to 
imagined lines connecting the first four (adjacent) and the last two dots in the representation of 
observed motion. However, the broken line is a linear approximation based upon the velocity at 
the nominal time. The predicted interface is also shown in the theoretical plots. The waves in 
the predicted interfaces are artifacts of the numerical solution with a finite size mesh and can be 
mentally smoothed to the true solution. The mesh size is apparent from the steps on the 
inclined boundary. 

Observed and predicted particle motion are combined for direct comparison in figures 14-16. 
Selected points in time are shown during the sedimentation of variations on the standard case. 

The basic data available for comparison with model prediction consists of particle velocity 
measurements at various times, in various locations, and in various sedimentation systems. 
Each observed velocity (Vp)obs can be compared in magnitude and direction with predicted 
values, v + W~,, extracted for the given time and location in a modeling solution. The relative 
error between an observed and predicted particle velocity may be defined as: 

Iv+ W~ - (Vp)obsl 
R e l a t i v e  e r r o r  = 

Iv + w~ + (V~)obsl" 

This error term can range from zero to infinity. 
Table 2 shows the average relative error at each observation time during four experimental 

runs. In the standard case, the average relative error was only 0.19. This low value includes 
experimental errors due to uncertainty in the time and place of the observation, the use of 
time-average experimental velocity and position, and the true settling velocity distribution of 
the markers. The average relative error was also this low in the runs involving particles of size 

II and involving the 47°-base-angle cone. 
The run involving a higher particle concentration yielded a greater relative error. There are 
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Figures 10-13. Interface position and particle trajectories predicted by continuum model for standard case. 
Nn, = 10,720, NR, = 1.49, B/A -- 1.71. 
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Figure 14. Comparison of observed and predicted particle trajectories for case of higher concentration than 
standard (0.002 volume fraction). Predicted interface also shown. ]~Gr = 42,870, NRe = 1.49, B/A = 1.71. 

Settling time, 60 sec. 

Figure 15. Comparison of observed and predicted particle trajectories for case of smaller particles than 
standard (size fraction II). Predicted interface also shown. N6R = 10,780, NRe = 0.811, B/A = 1.71. Settling 

time, 60 sec. 
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Figure 16. Comparison of observed and predicted particle trajectories for case of less acute cone than 
standard (cone base angle 47.0*). Predicted interface also shown. NGr = 10,720, NR~ = 1.49, B/A = 1.07. 

Settling time, 30 sec. 
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Table 2. Difference between observed and predicted particle velocities during four 
sedimentations. Entries shown as: average relative error (number of markers observed) 

Higher Smaller Less 
Run conditions Standard cone. part. acute cone 

Particle volume fraction 0.0005 0.0020 0.13005 0.11005 
Particle size fraction I I II I 
Cone base angle 59.7 ° 59.7 ° 59.7 ° 47.0 ° 

Time (see) 
Average 15 0.21(62) 0.20(45) 

relative 30 0.15(41) 0.42(48) 0.21(69) 0.18(41) 
error 45 0.24(44) 

60 0.26(36) 0.34(28) 0A8(40) 0.o704) 
75 0.09(25) 
90 0.08(12) 0.13(7) 0.22(22) 

120 0.17(19) 
150 0.13(9) 

overall 0.19(220) 0.37(83) 0.19(159) 0.17(100) 

two explanations for this result. Marker images in the experimental photographs were not as 
clear as in the other runs because the images were viewed through more "matched"-refractive- 
index beads. 

The second explanation is that the numerical approximation to the cone at its base corners 
was too crude and restricted the solution. The bottom, right-hand, interior cell in the numerical 
mesh can contain no fluid flow because it is only open on one side. Although the driving force 
may be sufficient to convect particles into the bottom, right-hand cell, this is not possible in the 
numerical solution. Thus if the cell is large enough to restrict base coverage by the cloud, 
particle removal through the base is thereby limited. The solution is inexact in the higher 
concentration run for this reason. This limitation, which is apparent in figure 14, could be 
removed by using a finer mesh. 

Convective velocities above the suspension interface were also examined by using sub- 
stitnte markers which settled relatively slowly. An aluminum dust was used which settled at a 
tenth of the rate of the clear standard beads with which it was dispersed at nominal 
concentration. The markers had a mean settling velocity of 0.0043 - 0.0002 cm/sec. Comparison 
between observed movement of these markers in an otherwise standard run and predicted 
movement, based on the mean settling velocity (no account made for the distribution), gave an 
average relative error of only 0.31. 

Interface movement 
The comparison of observed and predicted interfaces is impaired because both appear 

irregular. Experimental interfaces are ill defined, particularly at early times. Location of 
interface positions, as shown in figure 7 for the standard case, involves extensive subjective 
judgement. The comparable predicted interface positions are shown in figure 17. Irregularities 
in these interfaces can be shown to be artifacts of the finite mesh in the numerical solution. 
Experimental and theoretical interfaces have the same general shapes. 

At later stages of the sedimentation, the experimental interface becomes much better 
defined. Small scale settling convection presumably acts to smooth the interface. At these later 
stages experimental and theoretical interfaces match quite well. After 90 sec in the standard 
case the areas beneath the two interfaces match to within a few percent. Settling time was 
generally well predicted. 

P E R S P E C T I V E S  ON THE MODEL 

Limits 
The theoretical lower limit to settling convection and its enhancement of sedimentation is 

the no-convection case of simple settling. The initial interface moves vertically downwards with 
the Stokes settling velocity. 
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Figure 17. Interface positions predicted for the standard case. 

The "PNK" theory of Ponder (1925) and Nakamura & Kuroda (1937) represents an upper 
limit to the enhancement of sedimentation by settling convection. The complete leveling and 
base coverage in this theory represents an upper limit to the rate of removal, which in the 
continuum model, is proportional to base coverage. 

If applied to settling under a cone, the PNK theory predicts a horizontal settling interface 
whose height, z(t), is 

3 

= l- . [391 

The theory does not predict anything but this interface movement. 
Solutions to the continuum model proposed here lie between the no convection and PNK 

limits in terms of rate of particle removal. This is illustrated in figures 20 and 21 by the time 
dependence of the volume still containing particles. The continuum model solution is shown for 
various values of N~, and No,. The limits are, however, not specific to any case but are 
functions solely of the normalized time, Wt/B. 

The plot for the continuum model solution is a deceptively linear representation of a very 
non-linear solution. During the first quarter of the sedimentation in the standard case, the 
solution follows the no.convection limit. Settling convection increases the removal rate above 
this limit. For a time the removal rate is held practically constant. Later as the settling 
convection damps, the removal rate falls off more rapidly. Settling is completed in the standard 
case in about 40 per cent of the time required in the no-convection limit. 

Figures 20 and 21 also show the numerical limit to the rate of particle removal when a 
20 × 20 mesh is used. This limit corresponds to the restriction on particles convecting into the 
bottom, right-hand cell. By experimentation with a finer mesh it was shown that this limit was 
not significantly active in affecting the standard solution. 
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Energy 
Settling convection may be profitably examined from the perspective of an unsteady-state, 

macroscopic, energy balance: 

Initially\ /Remaining\ / Kinetic \ /Net  viscous \ / Net viscous \ 
available] = / available | + / energy of / / dissipation / idissipation due I 
potential] ~ potential / Iconvective]+ Idue to Stokesl + ~to convective ]" 
energy/ ~ energy / \ flow / ~ flow / ~ flow / 

[4O] 

Thus the potential energy lost by settling particles is converted (1) to convective kinetic energy 
and (2) to internal energy by the viscous dissipation of both the convective flow and flow 
around settling particles. The term "convective flow" represents flow on the scale of the 
enclosure and is exclusive of flow on the scale of individual particles. Flow on the scale of the 
particles does not appear in the balance because its contribution can be assumed constant in the 
context of the model. Effects of particle rotation and dilational forces were negligible in the 
balance. 

The terms in the energy balance can be computed from the numerical solution of a 
continuum model (Hill 1974). Figure 18 shows the result of such computation for the standard 
case solution. Energy values are shown as fractions of the initial available potential energy, 
1.52 × 10 -4 joule. Again the no-convection limit is shown in which lost potential energy is 
identically dissipated by the Stokes flow around the settling particles. 

In the continuum solution, some of the available potential energy is converted to the kinetic 
energy of a convective flow. The proportion of energy in this kinetic form reaches a maximum 
of only 0.3 per cent as shown on an expanded scale in figure 19. The kinetic energy is expeditiously 
dissipated by strong viscous forces. Thus, in spite of the small magnitude of kinetic energy, 23 per 
cent of the initial energy is eventually dissipated by convective flow. 

The energy balance shows that, after sedimentation is complete, the net energy which was 
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dissipated by convective flow must have been counterbalanced by a savings in the energy 
dissipated by the Stokes flow around the settling particles. Under the assumptions of the 
theory, this can only occur if the particles are removed more quickly as a result of the 
convection. 

M O D E L  P A R A M E T E R S  

The variables affecting settling convection are best discussed in terms of dimensionless 
parameter groups. In the continuum model, two groups, the sedimentation Grashof number and 
the sedimentation Reynolds number, enter through the modeling equations. A complete set of 
dimensionless groups defining a problem in settling convection is formed by supplementing 
these two groups with those groups entering through boundary and initial conditions. For batch 
sedimentation in a cone, one additional group enters in defining the inclined boundary. This is 
the tangent of the cone base angle, i.e. B/A if B is the height and A is the radius of the base of 
the cone. 

Sedimentation Grashof number 
The sedimentation Grashof number, [B3gp(pp-p)d,°]//~ 2, represents the significance of 

gravitational forces relative to viscous forces in any convective flow. The Grashof number was 
varied in experimental and theoretical studies by adjusting the initial particle concentration, ~o. 

A Grashof number of zero corresponds to the no-convection limit. As the Grashof number 
increases from zero a convection appears late in the sedimentation at which time the con- 
vection can be effectively centered away from strong viscous dissipation by the enclosure 
walls. As N6r increases further, settling convection acts earlier during the sedimentation toward 
leveling non-horizontal, suspension interfaces. The convection becomes more forceful and more 
effective in leveling the interface early in the sedimentation process. As N6~ ~ oo, the PNK limit 
of a uniformly horizontal interface is approached. Figure 20 illustrates the effect of N6, in 
swinging particle removal from one possible limit to the other. 
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Figure 20. Effect of NG, on volume beneath interface. - - - ,  PNK limit (NGr ~oo). ~ ,  (a) Standard case: 
o o =0.0005, N ~  = 10,720. , (h) • =0.0001, No, =2150. .-, (c) 0°=0.00002,  No, =430. " . . . . .  , 

Limit of no-convection (NG, ~0) .  - . . . .  , Numerical limit using a 20 x 20 computing mesh. 

Sedimentation Reynolds number 
The sedimentation Reynolds number, (BWp)/p, represents the significance of inertial forces 

relative to viscous forces in any convective flow. The Reynolds number was varied in 
experimental and theoretical studies by adjusting the particle settling velocity, W. 

Note from its definition that as Reynolds number increases the sedimentation time 
decreases. Processes at varying NR~ are comparable in terms of normalized time, WttB, rather 
than real time. In normalized time the processes will be compared at about the same stage of 
particle removal. The comparison is identical at the limits. 
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The Reynolds number is equivalent to a ratio of normalized time, scaled for vertical 

sedimentation, to the dimensionless time, T, used in the dimensionless form of the continuum 
equations. T was scaled for viscous damping. Thus the higher the NR,, the more important is 
the "inertia" of vertical particle sedimentation relative to the viscous dissipation of a con- 
vective flow. Convection acts later during the sedimentation process (later in normalized time) 
to level the suspension interface. A larger horizontal imbalance in concentration accumulates, 
and the convection is driven to a greater magnitude. 

Figure 21 shows that the later and more forceful convection which occurs at higher NRe is 
less effective in speeding particle removal. Less energy is dissipated by settling convection 
because the convection occurs over a shorter real time and, since it also occurs at a later stage 
in the sedimentation, the convection is centered away from the cone walls. 

The no-convection limit is approached as NR,-*oo; settling occurs before any settling 
convection can occur. The PNK limit is approached as NRe~0; settling convection achieves 

substantially complete interface leveling at all times. These limiting solutions may occur outside 
the bounds of assumptions in the theory such as the assumption of laminar flow. 
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Figure 21. Effect of NR, on volume beneath settling interface. - - - ,  PNK limit (NR, -,0). ~ ,  (a) Standard 
case: W=0.046cm/sec, NR, = 1.49. , (b) W=0.100cm/sec, N~ =3.24. , (c) W=0.200cm/sec, 
NRr =6.28. • . . . . .  , Limit of no-convection (NRr--,oo). - . . . .  , Numerical limit using a 20x20 computing 

mesh. 

Enclosure geometry and scale 
The tangent of the cone base angle, B/A, is the third and final dimensionless parameter to 

appear in settling convection theory. B/A was varied in a theoretical study via A, the base 
radius, while B remained constant. 

There are two effects of varying B/A in this way. First note that vessel volume decreases 
with A, and viscous forces restrict convection more strongly. In the limit of BIA ~oo there is no 
convection. 

The second effect to note is that when cones and the sedimentation interfaces within are of 
quite different horizontal and vertical dimensions, the most effective convective flow pattern is 
oblong. The oblong flow pattern dissipates energy more quickly than would a more circular flow 
pattern of similar magnitude of flow. In an acute cone this effect may be reduced as convection 
levels the interface and the flow becomes more circular. In an obtuse cone, however, leveling 
will only cause the convective flow to become more horizontally oblong. Thus in the limit of 
B/A-,  O, there is no convection. 

The above two effects tend to counterbalance each other so that an optimum cone angle 
exists for an acute cone. The optimum is generally a function of Np., and Nor. 

From the viewpoint of design the effect on vessel scale, B, is also of particular interest. The 
effect is not immediately clear because increasing B (with BIA and other primary variables held 
constant) increases effectiveness through Nor but decreases this effectiveness through N~. The 
important effect of B is its effect on the ratio NG,/N~ in [2]. This ratio represents the 
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significance of gravitational forces to inertial forces in any convective flow. An increase in B 
increases the ratio as B 2, and thus a given horizontal imbalance in particle concentration is 
removed more quickly relative to a normalized time scale of sedimentation. Settling convection 
occurs relatively earlier and to a greater and more effective degree in larger scale cones. 

CONCLUSIONS AND SIGNIFICANCE 

Increased sedimentation rates observed in enclosures without a single, horizontal upper 
surface result from a naturally occurring convection. In systems with only 0.0005 volume 
fraction particles, velocities of this "settling convection" exceed the normal particle settling 
velocity by an order of magnitude. 

Assuming that settling convection is caused by momentum transfer from particles to fluid, a 
mechanistic model is developed based upon continuum fluid dynamics. Fluid motion satisfies a 
continuity equation and a Navier-Stokes equation to which is appended a term representing 
momentum transfer from settling particles. This Boussinesq-like transfer term is linear in 
particle concentration. The equations of particle motion may be interpreted to show that 
particles move with a constant velocity relative to the fluid and are contained at a uniform and 
constant concentration beneath a sharp interface. 

An experimental study of the sedimentation beneath a cone of dilute suspensions of 
monodisperse particles in a viscous, incompressible and Newtonian fluid was used to verify the 
model. Experimental runs with varying particle settling velocity, particle concentration, and 
conical geometry matched model predictions which were based solely upon basic physical 
properties. The match was very good in terms of settling time and the convection velocity field. 

The model shows that sedimentation beneath a cone is dependent upon only three dimen- 
sionless groups--a sedimentation Grashof number, N o r  = B 3 g p ( p p  - p)~°/(/.L2); a sedimentation 
Reynolds number, NRe = BWp/~;  and the tangent of the cone base angle, B/A. The case of 
vertical settling with no convection is approached as NG, -* O, NRe --> o~, B/A ~ 0 or B/A -> o~ The 
most rapid sedimentation, the case where the convection sustains a horizontal interface, is 
approached as Nor ~ oo or NR~ -~ 0. 

When No, increases, settling convection acts more quickly toward leveling a given non- 
horizontal, suspension interface. Convection occurs earlier and is more forceful. 

When NRe increases, both vertical settling and settling convection occur faster, but vertical 
settling proceeds to a greater extent before settling convection occurs. As NR~ increases within 
the range of practical interest settling convection is more forceful. 

The continuum model is the first model of settling convection to have a mechanistic basis. 
This mechanism, particle momentum-transfer to the fluid, wholly accounts for strong con- 
vection in a dilute system. Since the mechanism becomes more forceful in more concentrated 
systems, the mechanism is also of prime importance in these systems. 
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